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1. Introduction and summary

String theory in AdS3 plays an important rôle in building string theory models of black holes

and cosmology, and in the AdS/CFT correspondence. The AdS3 space-time is interesting

because it is Lorentzian, non-compact, and curved; the theory is nevertheless expected to

be tractable thanks to the ŝ`2 affine symmetry. However, the Lorentzian feature is still

a major technical hurdle. It can be avoided by Wick rotation, which makes space-time

Euclidean while still non-compact and curved, and relates the theory to the H+
3 model,
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i.e. string theory in the Euclidean AdS3, which still has the ŝ`2 symmetry. Solving the

H+
3 model is therefore a crucial technical step in the study of string theory in AdS3. By

solving the model we mean determining its spectrum and arbitrary correlators on arbitrary

Riemann surfaces. As was shown in [1, 2], the partition function and the correlators can be

defined, and in a few simple cases computed, within a path integral formulation. The H+
3

model has also been studied using the conformal bootstrap formalism [3], which exploits

consistency constraints (like crossing symmetry) on these correlators. These consistency

constraints were shown to be sufficient for fully determining the correlators of the H+
3

model on a sphere, and explicitly computing the three-point function [4, 5].

The usefulness of the conformal bootstrap formalism for the H+
3 model on a sphere

was not obvious from the start, since the formalism was developed for rational conformal

field theories whereas the H+
3 model is a non-rational CFT with a continuous spectrum.

However, this formalism also brought about significant progress in the case of Liouville

theory on the sphere and on the disc. Liouville theory is a simpler non-rational CFT

which can be considered as solved in the sense of the bootstrap formalism, because some

elementary correlators were explicitly computed, in terms of which all the other correlators

can in principle be deduced.

Encouraged by these examples, one might expect the H+
3 model on a disc to be solvable

by means of the conformal bootstrap formalism. As was first noticed in [6], there is however

a problem due to the presence of singularities in some correlators. These singularities

weaken the Cardy-Lewellen constraints [7, 8], i.e. the conformal bootstrap equations on

the disc. Such singularities are a consequence of the ŝ`2 symmetry of the model and

are therefore also present in the H+
3 model on the sphere, where they can however be

circumvented by analytic continuation.

We will show how the H+
3 model on the disc can be solved in spite of these singularities.

The main tool which enables us to analyze the singularities and solve the model is the H+
3 -

Liouville relation, which was first established in the case of the sphere [9]. In particular,

our main result is a formula (3.18) for arbitrary correlators of the H+
3 model at level k > 2

on the disc, in terms of correlators of Liouville theory at parameter b2 = (k − 2)−1 on the

disc. Schematically, (3.18) reads:

〈
n∏

a=1

Φja

m∏

b=1

rb−1,b
Ψ`b

rb,b+1

〉
∝

〈
n∏

a=1

Vαa

m∏

b=1

sb−1,b
(Bβb

)sb,b+1

n′∏

a′=1

V− 1
2b

m′∏

b′=1

B− 1
2b

〉
, (1.1)

where Φja ,Ψ`b are H+
3 bulk and boundary fields with spins ja, `b respectively, Vαa , Bβb

corresponding Liouville bulk and boundary fields with corresponding momenta αa, βb re-

spectively, and V− 1
2b

, B− 1
2b

are extra degenerate Liouville fields. The boundary conditions

are maximally symmetric in both theories, they correspond to AdS2 branes [10] in H+
3 with

parameters r and FZZT branes [11, 12] in Liouville theory with parameters s = r
2πb ± i

4b .

We are able to prove the formula for all correlators which do not involve boundary condition

changing operators, leaving the remaining cases as a strongly supported conjecture. We also

reformulate our result suitably for its application to the SL(2, R)/U(1) coset model (3.32).
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Since all Liouville correlators on the disc are known in principle, our H+
3 -Liouville

relation on the disc amounts to a solution of the H+
3 model on the disc. For some correlators,

the conformal blocks are simple enough that explicit expressions can be found. We will write

such explicit expressions in the cases of the boundary two-point function (section 4) and the

bulk-boundary two-point function (section 5). These special cases will allow us to perform

some consistency checks: comparing the boundary two-point function with predictions of

the classical H+
3 model and with N=2 Liouville theory, and the bulk-boundary two-point

function with a minisuperspace analysis.

Finding the boundary two-point function amounts to determining the spectrum of

open strings stretched between two AdS2 branes. In the case when these two branes are

different, we encounter a surprise: our results are incompatible with the SL(2, R) symmetry

which was previously assumed for this system, and show that the correct symmetry group

is the universal covering group S̃L(2, R).

The section 2 and the appendices provide supporting material on the H+
3 model, special

functions, and Liouville theory.

2. The H
+
3 model: state of the art

Let us review known results about the H+
3 model on Riemann surfaces without boundaries,

or with boundaries defined by AdS2 branes.

2.1 Bulk H+
3 model

The space H+
3 is a three-dimensional hyperboloid, or equivalently the space of (2 × 2)

Hermite matrices h with unit determinant and positive trace:

x2
0 − x2

1 − x2
2 − x2

3 = 1 , x0 > 0 ; h =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (2.1)

The H+
3 model at level k on a two-dimensional Riemann surface Σ parametrized by z can

be defined by the WZW-like action [2] of a matrix field h(z, z̄),

SH [h] =
k

2π

∫

Σ
d2zTr[h−1∂hh−1∂̄h] +

k

12πi

∫

∂−1Σ
Tr(h−1dh)3 . (2.2)

The H+
3 model is therefore a sigma-model with the manifold H+

3 as target space, and a

non-trivial B-field. One often parametrizes H+
3 by coordinates φ, γ, γ̄ as

h =

(
1 0

γ 1

)(
eφ 0

0 e−φ

)(
1 γ̄

0 1

)
=

(
eφ eφγ̄

eφγ eφγγ̄ + e−φ

)
. (2.3)

In terms of these coordinates the action becomes

SH =
k

π

∫
d2z

(
∂φ∂̄φ + e2φ∂γ∂̄γ̄

)
. (2.4)

The symmetry of the H+
3 model includes the SL(2, C) isometry group of the H+

3

manifold. The action of an SL(2, C) group element g on H+
3 is g ·h ≡ ghg†, so the element

– 3 –
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g = −id =

(
−1 0

0 −1

)
acts trivially on H+

3 . Thus the non-trivially acting isometry group

is actually SL(2, C)/Z2 ' SO(1, 3). The isometry group SO(1, 3) also follows from the

definition of H+
3 as an hyperboloid.

In the “minisuperspace” limit [13], which involves sending the level k to infinity, the

spectrum of the model reduces to the space of functions on the H+
3 manifold parametrized

by (φ, γ, γ̄). This minisuperspace spectrum is generated by the following functions:

Φj(x|h) =
2j + 1

π

(
[−x 1 ]h

[
−x̄

1

])2j

=
2j + 1

π

(
|γ − x|2eφ + e−φ

)2j
, (2.5)

where delta-function normalizability requires j ∈ −1
2 + iR. This number j is the spin of

an SL(2, C) representation; states belonging to the same representation are parametrized

by the isospin variable x ∈ C. The behaviour of Φj under an SL(2, C) transformation

g =

(
α γ

β δ

)
is

Φj(x|g · h) = |γx − δ|4jΦj(g · x|h) , g · x =
αx − β

γx − δ
. (2.6)

The spectrum of the quantum H+
3 model [2, 4] can formally be built from the minisuper-

space spectrum by acting with oscillators encoding the worldsheet z-dependence, which

amounts to extending the representations of the group SL(2, C) into representations of

the corresponding loop group. The set of physical representations itself does not change;

unless specified otherwise our integrals on the spin j will be over this set j ∈ −1
2 + iR.

The conformal weight of the primary field Φj(x|z) built from the classical field Φj(x|h) is

(using the notation b2 = (k − 2)−1)

∆j = −b2j(j + 1) = −j(j + 1)

k − 2
. (2.7)

The symmetry algebra of the H+
3 model is (after complexification) the affine Lie algebra

ŝ`2× ŝ`2 generated by the modes of the currents J = k∂hh−1, J̄ = kh−1∂̄h. This symmetry

results in the correlators obeying the Knizhnik-Zamolodchikov equations, which we will

recall and use in section 3. For now, let us write the consequences of the global symmetry

group SL(2, C):

〈
n∏

a=1

g · Φja(xa|za)

〉
=

〈
n∏

a=1

Φja(xa|za)

〉
, (2.8)

where the SL(2, C) transformation of the quantum field is defined by

g · Φj(x|z) ≡ |γx − δ|4jΦj(g · x|z) . (2.9)

Due to this simple transformation law, the isospin variable x is very convenient for the

study of the SL(2, C) symmetry. But for the purpose of writing H+
3 correlators in terms of
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Liouville correlators it is more convenient to use the Fourier-transformed µ-basis [9]

Φj(µ|z) =
1

π
|µ|2j+2

∫

C

d2x eµx−µ̄x̄Φj(x|z) . (2.10)

And for the purpose of comparing the H+
3 model with N=2 supersymmetric Liouville

theory, we will need the m-basis

Φj
mm̄(z) =

∫
d2x

|x|2 x−j+mx̄−j+m̄Φj(x|z) = N j
mm̄

∫
d2µ

|µ|2 µ−mµ̄−m̄Φj(µ|z) , (2.11)

where the physical values of m, m̄ and the normalization N j
mm̄ are

m =
n + ip

2
, m̄ =

−n + ip

2
, (n, p) ∈ Z × R, N j

mm̄ =
Γ(−j + m)

Γ(j + 1 − m̄)
. (2.12)

Some basic correlators of the H+
3 model on a sphere can be written explicitly. The bulk

two-point function is

〈
Φj1(µ1|z1)Φ

j2(µ2|z2)
〉

= |z2 − z1|−4∆j1 |µ1|2δ(2)(µ2 + µ1)

×
(
δ(j2 + j1 + 1) + RH(j1)δ(j2 − j1)

)
, (2.13)

where we introduce the bulk reflection coefficient RH(j) such that

Φj(µ|z) = RH(j)Φ−j−1(µ|z) , RH(j) = b−2

(
1

π
b2γ(b2)

)−(2j+1) γ(+2j + 1)

γ(−b2(2j + 1))
.(2.14)

The bulk three-point function [4] is here written in the µ-basis in a manifestly reflection-

covariant way [14]:

〈
3∏

a=1

Φja(µa|za)

〉
=

δ(2)(
∑

µa)

|z12|2∆3
12 |z13|2∆2

13 |z23|2∆1
23

DH

[
j1 j2 j3

µ1 µ2 µ3

]
CH(j1, j2, j3),

DH =
|µ1|2j1+2

|µ2|2j1

∑

η=±
γj1,j2

jη
3

∣∣∣∣
µ2

µ3

∣∣∣∣
2jη

3

2F1

(
j1 − j2 − jη

3 , j1 + j2 − jη
3 + 1,−2jη

3 ;−µ3

µ2

)
,

CH = − 1

2π2b

[
γ(b2)b2−2b2

π

]−2−Σji

Υ′
b(0)

Υb(−b(j123 + 1))Γ(−j123 − 1)

× Υb(−b(2j1 + 1))Υb(−b(2j2 + 1))Υb(−b(2j3 + 1))

Υb(−bj3
12)Γ(−j3

12) Υb(−bj2
13)Γ(−j2

13) Υb(−bj1
23)Γ(−j1

23)
. (2.15)

Notations:





∆3
12 = ∆j1 + ∆j2 − ∆j3, j3

12 = j1 + j2 − j3, j123 = j1 + j2 + j3,

j+ = j, j− = −j − 1, 2F1(a, b, c; z) = F (a, b, c; z)F (a, b, c; z̄),

γj1,j2
j3

= Γ(−j123 − 1)Γ(−j1
23)Γ(−j2

13)Γ(j3
12 + 1)γ(2j3 + 1).

The special functions γ and Υb are defined in the appendix. The reflection covariance
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of this expression follows from the reflection invariance of DH , and the reflection behaviour

CH(j1, j2, j3) = RH(j3)C
H(j1, j2,−j3 − 1).

The four-point function of the H+
3 model has been shown to be crossing symmetric [5].

This means that it can be deduced from the three-point structure constant CH in two

different ways:

〈
4∏

a=1

Φja(µa|za)

〉
=

∫
djs CH(j1, j2, js) CH(−js − 1, j3, j4) Gs

js
(ja|µa|za) (2.16)

=

∫
djt CH(j1, j4, jt) CH(−jt − 1, j2, j3) Gt

jt
(ja|µa|za) , (2.17)

where the s and t-channel conformal blocks Gs
js

(ja|µa|za) and Gt
jt

(ja|µa|za) are entirely

determined by the affine ŝ`2 symmetry and thus in principle known before solving the

model. This crossing symmetry relation should be viewed as a constraint on the three-

point structure constant CH . Exploiting very special cases of this constraint was enough

to unambiguously determine CH [4]. That this unique solution turned out to satisfy the

full crossing symmetry was an additional non-trivial check.

2.2 Euclidean AdS2 branes

Euclidean AdS2 branes preserve an SL(2, R) subgroup of the bulk symmetry group

SL(2, C) [10]. The geometry of these D-branes is defined by the equation

Tr Ωh = 2 sinh r , (2.18)

for r a real parameter, and Ω a Hermitian matrix which determines the relevant SL(2, R)

subgroup as the set of SL(2, C) matrices such that g†Ωg = Ω. For definiteness we choose

Ω =

(
0 1

1 0

)
, in which case the SL(2, R) subgroup is the set of matrices

g =

(
a ic

−ib d

)
, ad − bc = 1, a, b, c, d ∈ R . (2.19)

In the minisuperspace limit, the spectrum of open strings on an AdS2 brane reduces to

the space of functions on the corresponding two-dimensional submanifold of H+
3 . The

minisuperspace spectrum is generated by the functions:

Ψ`(t|h) =

(
[ it 1 ]h

[
−it

1

])`

, (2.20)

where the boundary spin ` belongs to −1
2 + iR, and the boundary isospin is t ∈ R. (For

more details see appendix A.2 of [10].) Under SL(2, R) transformations we have

Ψ`(t|g · h) = |ct − d|2`Ψ`(g · t|h) , g · t =
at − b

−ct + d
. (2.21)
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The spectrum of the quantum model is generated by corresponding boundary fields Ψ`(t|w)

with w a real coordinate on the worldsheet boundary, which transform as

g · Ψ`(t|w) ≡ |ct − d|2`Ψ`(g · t|w) . (2.22)

There also exist SL(2, R) representations whose fields would behave as g · Ψ`(t|w) = |ct −
d|2`sgn(−ct + d)Ψ`(g · t|w), but such fields do not appear in the minisuperspace spectrum

of AdS2 branes and we assume that they are absent from the exact spectrum as well.

We will naturally assume that correlators involving boundary fields preserve the SL(2, R)

symmetry:

〈
n∏

a=1

g · Φja(xa|za)

m∏

b=1

g · Ψ`b(tb|wb)

〉
=

〈
n∏

a=1

Φja(xa|za)

m∏

b=1

Ψ`b(tb|wb)

〉
. (2.23)

We will also be interested in boundary condition changing fields r′Ψ
`(t|w)r describing open

strings stretched between two AdS2 branes with different parameters r, r′. We will see in

section 4 that the symmetry properties of these fields are significantly more complicated.

So in the present review section we focus on the already well-understood r-preserving fields.

The t-basis boundary fields we have considered so far are useful for the study of the

SL(2, R) symmetry. When it comes to the H+
3 -Liouville relation, it is more convenient to

use the following ν-basis fields:

Ψ`(ν|w) = |ν|`+1

∫

R

dt eiνtΨ`(t|w) . (2.24)

The relation with the SL(2, R)/U(1) coset and N=2 Liouville theory is more naturally

expressed using the m-basis fields, which diagonalize the t-dilatations and ν-dilatations:

Ψ`
m,η =

∫ ∞

−∞
dt |t|−`−1+msgnη(t)Ψ`(t) (2.25)

= N `
m,η

∫
dν

|ν| |ν|
−msgnη(ν)Ψ`(ν) , (2.26)

where physical values of m are pure imaginary, and we define

η ∈ {0, 1} , N `
m,η = 2iηΓ(−` + m) sin π

2 (−` − 1 + m − η) . (2.27)

The boundary two-point function of open strings living on a single AdS2 brane of parameter

r is known to be [10]1

〈
Ψ`1(t1|w1)Ψ

`2(t2|w2)
〉

r
= |w12|−2∆`1

× 1

2π

[
δ(`1 + `2 + 1)δ(t12) + δ(`1 − `2)R̃

H
r (`1)|t12|2`1

]
(2.28)

1Our formulas agree with [10] only up to renormalization of the boundary fields.
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or equivalently

〈
Ψ`1(ν1|w1)Ψ

`2(ν2|w2)
〉

r
= |w12|−2∆`1

× |ν1|δ(ν1 + ν2)
[
δ(`1 + `2 + 1) + RH

r (`1)δ(`1 − `2)
]

. (2.29)

The H+
3 boundary “reflection number” R̃H

r (`) is related to the H+
3 boundary reflection

coefficient RH
r (`) by

R̃H
r (`) =

π

sin π`

1

Γ(2` + 1)
RH

r (`) . (2.30)

The quantity RH
r (`) deserves to be called the boundary reflection coefficient because of its

rôle in the simple reflection property of the ν-basis field,

Ψ`(ν|w) = RH
r (`)Ψ−`−1(ν|w) . (2.31)

Explicitly, RH
r (`) can be written in terms of the Liouville boundary reflection coeffi-

cient (C.3), provided the Liouville parameter is chosen as b = (k − 2)−1/2:

RH
r (`) = RL

r
2πb

− i
4b

, r
2πb

+ i
4b

(
b(` + 1) +

1

2b

)
. (2.32)

This relation between the H+
3 and Liouville boundary reflection coefficients is not surprising

given the relation RH(j) = RL(b(j + 1) + 1
2b) [9] between bulk reflection coefficients; the

boundary relation actually follows from the relation between the boundary states of the

AdS2 brane in H+
3 and the FZZT brane in Liouville theory [15], via the computation of

the annulus amplitude.

Another known useful correlator is the bulk one-point function [10, 16]

〈
Φj(x|z)

〉
r

=
1

|z − z̄|2∆j

[
−πb2γ(−b2)

]j+ 1
2 (8b2)−

1
4

×|x + x̄|2jΓ(1 + b2(2j + 1))e−r(2j+1)sgn(x+x̄), (2.33)
〈
Φj(µ|z)

〉
r

=
1

|z − z̄|2∆j

[
−πb2γ(−b2)

]j+ 1
2 (8b2)−

1
4

×|µ|δ(<µ)Γ(2j + 1)Γ(1 + b2(2j + 1)) cosh(2j + 1)(r − iπ
2 sgn=µ) . (2.34)

3. H
+
3 correlators on a disc

Here we will study arbitrary H+
3 correlators on a disc. We will express them in terms of Li-

ouville correlators, which we consider as known quantities. The use of Liouville correlators

will become natural after we recall that the Knizhnik-Zamolodchikov equations, which fol-

low from the assumption that our H+
3 correlators preserve the affine Lie algebra symmetry

of the model, are equivalent to the Belavin-Polyakov-Zamolodchikov equations satisfied

by certain Liouville correlators. Due to the existence of singularities, the KZ equations

together with the usual factorization axioms are not enough for fully determining the H+
3

correlators; we will introduce the additional assumption of continuity at the singularities.
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Then we will exhibit a solution eq. (3.18) of all these requirements in terms of Liouville

correlators. In the case of the bulk two-point function on the disc, we will prove that

this solution is unique, even though our continuity assumption is weaker than the usual

assumptions of the conformal bootstrap formalism.

3.1 Axioms for H+
3 correlators on a disc

3.1.1 Symmetry requirements

We have already written the global SL(2, R) symmtry condition (2.23) for H+
3 correlators

on a disc. Here we concentrate on the KZ equations, which follow from the local ŝ`2

symmetry. It was shown in [15] that the gluing conditions for the AdS2 branes are trivial

in the µ-basis, which implies that the disc correlators satisfiy the same KZ equations as

the sphere correlators obtained by the “doubling trick”,
〈

n∏

a=1

Φja(µa|za)
m∏

b=1

Ψ`b(νb|wb)

〉

disc

→
〈

n∏

a=1

(
Φja(µa|za)Φ

ja(µ̄a|z̄a)
) m∏

b=1

Φ`b(νb|wb)

〉

sphere

.(3.1)

The KZ equations for a bulk correlator ΩH
n =

〈∏n
a=1 Φja(µa|za)

〉
are:


(k − 2)

∂

∂za
+

∑

b6=a

2t3at
3
b − t−a t+b − t+a t−b

za − zb


 ΩH

n = 0 ,





t+a = µa

t3a = µa
∂

∂µa

t−a = µa
∂2

∂µ2
a
− ja(ja+1)

µa

. (3.2)

The power of these equations comes from the fact that they are first order differential

equations in za. So if we know a correlator at some value of z1 or in some limit say

z1 → z2, then the ∂
∂z1

KZ equation determines that correlator for all values of z1, provided

no singularities are met on the way.

Explicit solutions of the KZ equations are known only in a few cases, some of which we

will see in sections 4 and 5. For our present purposes, it will however be enough to solve

the KZ equations in terms of Liouville correlators and conformal blocks. This is possible

thanks to the KZ-BPZ relation [9, 17], which relates the KZ equations for our H+
3 disc

correlators to the BPZ equations satisfied by certain Liouville disc correlators. We will

denote this as a relation ' between H+
3 and Liouville disc correlators. (The KZ and BPZ

equations do not depend on the boundary conditions, which are therefore omitted in the

following formula.)

〈
n∏

a=1

Φja(µa|za)

m∏

b=1

Ψ`b(νb|wb)

〉
' δ (2

∑n
a=1<µa +

∑m
b=1νb) |u| |Θn,m|k−2

2

×
〈

n∏

a=1

Vαa(za)
m∏

b=1

Bβb
(wb)

n′∏

a′=1

V− 1
2b

(ya′)
m′∏

b′=1

B− 1
2b

(yb′)

〉
, (3.3)

where the H+
3 model at level k is related to Liouville theory at parameter b, background

charge Q and central charge cL with

b2 =
1

k − 2
, Q = b +

1

b
, cL = 1 + 6Q2 . (3.4)

– 9 –
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The H+
3 spins j, ` are related to Liouville momenta α, β as

α = b(j + 1) +
1

2b
, β = b(` + 1) +

1

2b
. (3.5)

The n′ bulk degenerate Liouville fields V− 1
2b

and m′ boundary fields B− 1
2b

are introduced at

positions determined by Sklyanin’s change of variables, which changes the isospin variables

µa, νb subject to the condition 2
∑n

a=1 <µa +
∑m

b=1 νb = 0 (from global s`(2) symmetry)

into the variables ya′ , yb′ defined as the 2n′ + m′ = 2n + m − 2 zeroes of the function

ϕ(t) =
n∑

a=1

µa

t − za
+

n∑

a=1

µ̄a

t − z̄a
+

m∑

b=1

νb

t − wb
, (3.6)

plus one real variable

u = 2
n∑

a=1

<(µaza) +
m∑

b=1

νbwb . (3.7)

The prefactor Θn,m is written in terms of Zc = (za, z̄a, wb) and Yd = (ya′ , ȳa′ , yb′) as

Θn,m =

∏
c<c′≤2n+m(Zc − Zc′)

∏
d<d′≤2n+m−2(Yd − Yd′)∏2n+m

c=1

∏2n+m−2
d=1 (Zc − Yd)

. (3.8)

We just provided enough data to make the relation (3.3) between KZ and BPZ equations

explicit. Let us give more details on some relevant aspects and implications of this relation.

A closer look at Sklyanin’s separation of variables. There is in general no ex-

plicit formula for the degenerate field positions y as functions of the isospin variables µ, ν.

However, the definition of y as zeroes of a function ϕ(t) (3.6) can be reformulated as

ϕ(t) = u

∏2n+m−2
d=1 (t − Yd)∏2n+m
c=1 (t − Zc)

, (3.9)

which by taking the limit t → za or t → wb provides an explicit formula for µa or νb in

terms of y:

µa = u

∏2n+m−2
d=1 (za − Yd)

(za − z̄a)
∏

a′ 6=a≤n(za − za′)(za − z̄a′)
∏m

b=1(za − wb)
,

νb = u

∏2n+m−2
d=1 (wb − Yd)∏n

a=1 |wb − za|2
∏

b′ 6=b≤m(wb − wb′)
. (3.10)

Singularities of KZ solutions. The KZ-BPZ relation (3.3) allows us to easily study the

singularities of the KZ solutions, because the Liouville correlators on the right hand-side

are singular if and only if Liouville fields collide with each other or with the boundary.

If such a collision involves only the fields Vαa(za) and Bβb
(wb), then the corresponding

singularity at za = za′ , za = z̄a or wb = wb′ is the power-like singularity expected from the

H+
3 model on general grounds.
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However, extra singularities occur where degenerate Liouville fields V− 1
2b

(ya′) (or

B− 1
2b

(yb′)) are involved. If such a degenerate field comes close to Vαa(za) (or Bβb
(wb)),

then ϕ(t) loses its pole at t = za which implies µa = 0 (respectively, νb = 0). Such singu-

larities will play no significant rôle in the following, and should be considered as artefacts

of the µ-basis. On the other hand, singularities arising from collision of two boundary

degenerate fields to become one bulk degenerate field B− 1
2b

B− 1
2b

→ V− 1
2b

(or vice versa)

will play a crucial rôle;2 in the following we will always refer to these singularities when

writing about singularities of H+
3 correlators. Let us explain their importance in the case

of the bulk two-point function on the disc
〈
Φj1(µ1|z1)Φ

j2(µ2|z2)
〉
. (This case was already

studied in [15].)

Given
∑2

a=1 <µa = 0, the function ϕ(t) =
∑2

a=1

(
µa

t−za
+ µ̄a

t−z̄a

)
has two zeroes. If they

are both real, they correspond to two Liouville degenerate boundary fields in a correlator〈
Vα1(z1)Vα2(z2)B− 1

2b
(y1)B− 1

2b
(y2)

〉
: we call this situation the boundary regime. If they

are complex conjugate, they define the position of one Liouville degenerate bulk field in

a correlator
〈
Vα1(z1)Vα2(z2)V− 1

2b
(y1)

〉
: we call this the bulk regime. The positions of the

Liouville fields involved in the KZ-BPZ relation (3.3) in the case of the H+
3 bulk two-point

function on the disc can be depicted as:

+
z1

+
z2�y1�y2

Boundary regime

+
z1

+
z2

�

Singularity

+
z1

+
z2
�

y1

Bulk regime

|µ1|+|µ2|
|µ1+µ2|

1 +∞
z =

∣∣∣z1−z̄2
z1−z2

∣∣∣| |

(3.11)

This singularity is significant because it separates two regimes which are not otherwise

connected, since the cross-ratio z takes real values. This is in contrast to the similar

singularity which appears in the H+
3 four-point function on a sphere. The related Liouville

correlator is in that case
〈∏4

a=1 Vαa(za) V− 1
2b

(y1)V− 1
2b

(y2)
〉
, and one can go around the

singularity y1 = y2 by moving y1, y2 in the Riemann sphere.

3.1.2 Factorization axioms

Factorization is a standard axiom of quantum field theory. It states that in the limit where

two of the fields come close, the correlator
〈∏n

a=1 Φja(µa|za)
∏m

b=1 Ψ`b(νb|wb)
〉

reduces to

lower correlators determined by the operator product expansion of the two fields. We of

course assume that H+
3 correlators obey such factorization axioms. Note that factorization

will only require taking limits of the worldsheet positions za, wb of the fields, while their

isospin variables µa, νb are kept fixed and arbitrary.

2Such singularities are presumably equivalent to the “z = x” singularity in Fateev and Zamolodchikov’s

KZ-BPZ relation [18] in the x-basis.

– 11 –



J
H
E
P
0
1
(
2
0
0
7
)
0
5
7

Depending on the nature of the two fields which come close, there are three types of

factorization, which correspond to inserting the three types of operator product expansions

into the correlators:

• Bulk OPE:

Φj1(µ1|z1)Φ
j2(µ2|z2) ∼

z12→0

∫
dj

∫
d2µ

|µ|2 |z − z1|4∆j

〈
Φj1(µ1|z1)Φ

j2(µ2|z2)Φ
−j−1(−µ|z)

〉
×

×
(
Φj(µ|z1) + O(z12)

)
, (3.12)

• Bulk-boundary OPE:

Φj(µ|z) ∼
z−z̄→0

∫
d`

∫
dν

|ν| |w − z|2∆`

〈
Φj(µ|z)Ψ−`−1(−ν|w)

〉
r
×

(
rΨ

`(ν|z)r + O(z − z̄)
)

, (3.13)

• Boundary OPE:

r1Ψ
`1(ν1|w1)rΨ

`2(ν2|w2)r2 ∼
w12→0

∫
d`

dν

|ν| |w − w1|2∆`

〈
r1Ψ

`1(ν1|w1)rΨ
`2(ν2|w2)r2Ψ

−`−1(−ν|w)r1

〉
×

×
(

r1Ψ
`(ν|w1)r2 + O(w12)

)
. (3.14)

(Note that the OPEs do not depend on the choice of the auxiliary worldsheet variables

z,w.)

We can formally write these OPEs without knowing the three basic correlators (bulk

three-point, bulk-boundary two-point, boundary three-point functions); on the other hand

we rely on the previous knowledge of the bulk and boundary spectra and two-point func-

tions3 eq. (2.13), (2.29).

Once inserted into a correlator, such an OPE should be considered as a formal limit,

since the corrections O(z12) to one term j can be dominant with respect to the leading

contribution Φj′(µ|z1) of another term j′ of higher conformal dimension. This formal limit

consists in focussing on the contribution of primary fields, and the corrections correspond

to descendants. Such corrections are in principle determined by the symmetry of the model,

in our case the affine Lie algebra symmetry.

Factorization and Cardy-Lewellen formalism. We now discuss the crucial issue of

the strength of the factorization constraints, i.e. in which measure they determine the

correlators. First note that if the sum over all descendant contributions converged for any

values of the worldsheet variables, then the correlators would be fully determined by their

3Although we do not yet know the spectrum of boundary fields r1
Ψ`(ν|w)r2

when r1 6= r2, we assume

that such fields are parametrized by the same values of ` and ν as in the case r1 = r2, and do not have

additional indices.
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behaviour in one given factorization limit. For example, we would fully know the bulk

two-point function on the disc thanks to the limit where it reduces to the known bulk

three-point function on a sphere and bulk one-point function on the disc:

〈
Φj1(µ1|z1)Φ

j2(µ2|z2)
〉
r

∼
z12→0

∫
dj

∫
d2µ

|µ|2 |z − z1|4∆j

〈
Φj1(µ1|z1)Φ

j2(µ2|z2)Φ
−j−1(−µ|z)

〉
×

×
(〈

Φj(µ|z1)
〉
r
+ O(z12)

)
(3.15)

We could now study
〈
Φj1(µ1|z1)Φ

j2(µ2|z2)
〉
r

in the limit z1 → z̄1. Whether it would

factorize or not would be a consistency test on the bulk three-point and disc one-point

functions. If the test was passed, we could then deduce the bulk-boundary two-point

function. Such constraints and relations for structure constants were systematically studied

by Cardy and Lewellen [7, 8].

The Cardy-Lewellen formalism actually applies in the cases of Liouville theory and

of the H+
3 model on the sphere. In the latter case, the sums of descendant contributions

however do not converge for all values of the worldsheet variables z (as is apparent from the

existence of singularities), but only in neighbourhoods of the various factorization limits.

But the affine Lie algebra symmetry which in principle determines these sums actually

yields a more powerful tool: the KZ equations. These equations can be used to analytically

continue the correlators in regions where the sums of descendants do not converge.

On the disc however, the H+
3 bulk two-point function is not fully determined by its

behaviour near z12 → 0, because as shown in the picture (3.11) it is impossible to go

around the singularity. We would need as additional data the behaviour near z1 − z̄1 → 0,

and therefore the (as yet unknown) bulk-boundary two-point function.4 In terms of sums

of descendants, the situation is presumably the following: the sum of descendants in the

bulk-boundary OPE converges near z1 = z̄1 and in the vicinity (up to the singularity), and

therefore in the boundary regime. The sum of descendants in the bulk OPE converges near

z1 = z2 and in the vicinity (up to the singularity), and therefore in the bulk regime. But

the strength of the Cardy-Lewellen constraints relies on the existence of an overlap between

the domains of convergences of these two OPEs. Such an overlap is absent in our case, as

opposed to the case of the bulk two-point function on the disc in Liouville theory, where

the sums of descendants in both OPEs converge for any values of z1, z2 as was established

in [19] (section 2.4 therein):

H+
3 model

Liouville
|µ1|+|µ2|
|µ1+µ2|1 +∞ z =

∣∣∣ z1−z̄2
z1−z2

∣∣∣
�

4The situation is even worse in the case of the boundary four-point function
˙
Q4

b=1 Ψ`b(νb|wb)
¸

: even

if we knew the boundary three-point function and therefore the behaviour in both possible factorization

limits w12 → 0, w23 → 0, we could not deduce the boundary four-point function in the regime where the

corresponding Liouville correlator has one bulk degenerate field.
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(Here the triangles denote the factorization limits, and the hatches the corresponding

regions where the sums of descendants converge.)

In this sense, the Cardy-Lewellen formalism does not fully apply to the H+
3 model on

the disc because of the singularities of the H+
3 correlators. Nevertheless, we can recover

part of the power of the Cardy-Lewellen constraints by making a natural assumption on

the behaviour of the H+
3 correlators at the singularities.

3.1.3 Continuity assumption

In contrast to the symmetry requirements and factorization axioms, which are standard

assumptions of conformal field theory in the conformal bootstrap formalism, our continuity

assumption will be a novelty of the H+
3 model on the disc. Such an assumption is made

necessary by the existence of extra singularities of the model (3.11): for the formalism to

be of any use, we need some control over the behaviour of correlators at these singularities.

Continuity assumption: The H+
3 correlators are continuous at the singularities which

occur when degenerate fields in the corresponding Liouville correlators collide.

In order to clarify the meaning of this assumption, let us recall how KZ solutions

behave near such singularities. This can easily be deduced from the relevant Liouville

OPEs, dressed with the |y12|
k−2
2 prefactor from the KZ-BPZ relation (3.3),

|y12|
k−2

2 B− 1
2b

(y1)B− 1
2b

(y2) ∼
y12→0

B− 1
b
(y1) + CL(− 1

2b
,− 1

2b
,Q)|y12|2k−3B0(y1) ,(3.16)

|y12|
k−2
2 V− 1

2b
(y1) ∼

y1−ȳ1→0
B− 1

b
(y1) + BL(− 1

2b
,Q)|y12|2k−3B0(y1) , (3.17)

where we omit the dependences on the boundary parameters of the Liouville boundary

three-point function CL(− 1
2b ,− 1

2b , Q), bulk-boundary two-point function BL(− 1
2b , Q), and

boundary fields. (Explicit formulas for the relevant OPE coefficients can be found in the

appendix, eq. (C.7) and (C.5).)

The leading behaviour of the KZ solutions therefore consists of two terms, associated

with the Liouville boundary fields B0 and B− 1
b
. (The corrections to the leading behaviour

are due to descendants of these two fields.) The critical exponent of the B− 1
b

term is zero,

so such a term has a finite limit whether it arises from the bulk regime (V− 1
2b

case) or from

the boundary regime (B− 1
2b

B− 1
2b

case). The critical exponent of the B0 term is 2k−3 > 1,

such a term goes to zero at the singularity. Therefore, all KZ solutions have finite limits at

the singularity. Our continuity assumption means that the limit evaluated from the bulk

regime should agree with the limit evaluated from the boundary regime. This seems to us

a very natural assumption.

Thus, the continuity assumption will be a nontrivial requirement on H+
3 correlators,

although it of course does not fully determine how KZ solutions behave through the sin-

gularity, because the B0 term remains unconstrained.

3.2 H+
3 disc correlators from Liouville theory

It is relatively easy to find an Ansatz for the H+
3 disc correlators which satisfies all our

axioms. The difficulty will be to prove that the solution is unique. Let us first write our
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Ansatz for arbitrary H+
3 correlators on the disc:

〈
n∏

a=1

Φja(µa|za)

m∏

b=1

rb−1,b
Ψ`b(νb|wb)rb,b+1

〉

= π2
√

b
2(−π)−n δ (2

∑n
a=1<µa +

∑m
b=1νb) |u| |Θn,m|k−2

2

×
〈

n∏

a=1

Vαa(za)

m∏

b=1

sb−1,b
Bβb

(wb)sb,b+1

n′∏

a′=1

V− 1
2b

(ya′)

m′∏

b′=1

B− 1
2b

(yb′)

〉
, (3.18)

where most notations were already defined in our study of the KZ-BPZ relation: the

Liouville parameter b (3.4), the Liouville momenta α, β (3.5), the quantity u (3.7), the

prefactor Θn,m (3.8). The positions ya′ , yb′ of the Liouville degenerate fields were defined

as the zeroes of a function ϕ(t) (3.6). In addition, we specify the set of boundary conditions

sb−1,b by

s =
r

2πb
− i

4b
sgnϕ(t) . (3.19)

That is, the Liouville boundary parameter s on a point t of the boundary is given by the

H+
3 boundary parameter r, shifted by a quantity which depends on sgnϕ(t). (Indeed ϕ(t)

is real if t is real.) Notice that ϕ(t) changes sign at its zeroes, which are the positions of

the boundary degenerate fields, and when it is infinite, which happens at the points where

the generic boundary fields sb−1,b
Bβb

(wb)sb,b+1
are inserted. So each boundary degenerate

field B− 1
2b

(yb′) induces a jump ± i
2b of the boundary parameter s, consistently with the

results of Fateev, Zamolodchikov and Zamolodchikov [11]. Then, for a given AdS2 brane

parameter r, there correspond two opposite values of the Liouville boundary cosmological

constant,

µB =

√
µL

sin πb2
cosh 2πbs = ±

√
µL

sin πb2
sinh r . (3.20)

The formula (3.18) is our main result and the rest of the article is devoted to giving evidence

for it, and drawing some consequences.

The first check is the compatibility with the bulk one-point function, which is explicitly

known (2.34). This check is straighforward and was already performed in [15].

Let us check that our formula satisfies the axioms of the H+
3 model. By construc-

tion, our Ansatz (3.18) satisfies the KZ equations. It is continuous at the singulari-

ties due to the agreement between the coefficients of the leading terms of the Liouville

lim
y12→0

B− 1
2b

(y1)B− 1
2b

(y2) and lim
z1−z̄1→0

V− 1
2b

(z1) OPEs (3.16), (3.17). The only subtle issues

come from the factorization axioms:

• Bulk factorization z12 → 0: the pole t = z1 of the function ϕ(t) (3.6) must remain

simple, so that one Liouville bulk degenerate field say V− 1
2b

(y1) must come close

to Vα1(z1) and Vα2(z2), i.e. y1 − z1 ∝ z12 → 0. Thus, we should insert into our
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Ansatz (3.18) the following Liouville OPE:

Vα1(z1)Vα2(z2)V− 1
2b

(y1) ∼
z12∝z1−y1→0

∫
dα |z − z1|4∆α

〈
Vα1(z1)Vα2(z2)V− 1

2b
(y1)VQ−α(z)

〉
× (Vα(z1) + O(z12)) , (3.21)

where ∆α = α(Q − α) is the conformal dimension of a Liouville field of momentum

α. This is the crucial step in proving that our Ansatz indeed satisfies the bulk OPE

axiom (3.12), as was shown in detail in [9] in the case of H+
3 correlators on the sphere.

• Bulk-boundary factorization z1−z̄1 → 0: by a similar reasoning, one Liouville bound-

ary degenerate field say B− 1
2b

(y1) must come close to Vα1(z1). We should insert into

our Ansatz (3.18) the following Liouville OPE:

Vα1(z1)B− 1
2b

(y1) ∼
z1−z̄1∝z1−y1→0

∫
dβ |w − z1|2∆β

〈
Vα1(z1)B− 1

2b
(y1)s−BQ−β(w)s+

〉
×

(
s−Bβ(z1)s+ + O(z1 − z̄1)

)
, (3.22)

with s± = r
2πb ± i

4bsgn(µ1 + µ̄1), and r is the H+
3 boundary parameter at the point

where z1 reaches the boundary. Then one can check that the Liouville correlator〈
Vα1(z1)B− 1

2b
(y1)s−BQ−β(z1)s+

〉
agrees with the prediction of our Ansatz (3.18)

for the H+
3 bulk-boundary two-point function appearing in the H+

3 bulk-boundary

OPE (3.13).

• Boundary factorization w12 → 0: by a similar reasoning, one Liouville boundary

degenerate field say B− 1
2b

(y1) must come close to Bβ1(w1), Bβ2(w2). We should insert

into our Ansatz (3.18) the following Liouville OPE:

Bβ1(w1)Bβ2(w2)B− 1
2b

(y1) ∼
w12∝y1−w1→0

∫
dβ |w − w1|2∆β

〈
Bβ1(w1)Bβ2(w2)B− 1

2b
(y1)BQ−β(w)

〉
× (Bβ(w1) + O(w12)) , (3.23)

where for definiteness we assumed the degenerate field to come on the right on

Bβ1(w1) and Bβ2(w2), while it may also come on the left or in between, depend-

ing on the signs of ν1, ν2 and ν1 + ν2. For simplicity, we omit the Liouville boundary

parameters, which can easily be deduced from our Ansatz. This is the main step in

checking that our Ansatz (3.18) is compatible with the H+
3 boundary OPE (3.14).

There is however a property which we have not checked: the SL(2, R) group symme-

try (2.23), or equivalently its Lie algebra version s`(2, R). In the absence of boundaries,

this symmetry is necessary for the KZ-BPZ relation [14, 9], and is therefore automatically

included in the H+
3 -Liouville relation. However, it is not obvious that our Ansatz is s`(2, R)

symmetric, because the Liouville boundary parameter (3.19) varies along the boundary, in

a way which is non-trivially affected by s`(2, R) transformations. In the case of the bulk-

boundary two-point function (section 5), we will explicitly check the SL(2, R) symmetry of

our Ansatz.
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3.3 Uniqueness of the solution to the axioms

We have easily checked that our formula (3.18) for the H+
3 disc correlators verifies our

axioms of symmetry, factorization and continuity. We will now argue that this solution is

unique in the particular case of correlators with no boundary condition changing operators.

We will write an explicit argument only in the case of the bulk two-point function on

the disc. This will be enough to address the crucial issue of the singularity separating the

bulk and boundary regimes, as defined in (3.11). Let us spell out the formula to be proved:

〈
Φj1(µ1|z1)Φ

j2(µ2|z2)
〉
r

=
√

b
8δ (<(µ1 + µ2)) |u|

(
|z12|2|y12|

∏
a |za − z̄a|2∏

a,b |za − yb|2

) k−2
2

×





〈
Vα1(z1)Vα2(z2)V− 1

2b
(y1)

〉
s+

if y2 = ȳ1 (bulk regime) ,
〈
Vα1(z1)Vα2(z2)s+B− 1

2b
(y1)s−B− 1

2b
(y2)s+

〉
if y1 < y2 ∈ R (boundary regime) ,

(3.24)

where s± = r
2πb ∓ i

4b sgnu with u = 2<(µ1z1 + µ2z2), and in the bulk regime we have

sgnu = sgn=(µ1 + µ2).

The explicit knowledge of the H+
3 bulk one-point function on the disc, and the axiom of

bulk factorization (3.12), are enough to prove the formula (3.24) in the limit z12 → 0. Then,

the local ŝ`2 symmetry requirement and the knowledge that the resulting KZ equations are

equivalent to BPZ equations (3.3) show that the formula is true in the whole bulk regime.

The continuity assumption will now provide some information on the bulk two-point

function at the z = |µ1|+|µ2|
|µ1+µ2| end of the boundary regime. The other end z = 1 is constrained

by the axiom of bulk-boundary factorization (3.13), which is a non-trivial requirement even

though we do not know the bulk-boundary two-point function. These two limiting regions

are connected by the KZ equations, which hold in the whole boundary regime. We purport

to show that, taken toghether, these constraints are enough to fully determine the bulk

two-point function in the boundary regime.

The reasoning could now go in two possible directions, depending on which one of the

two limiting regions we consider first. If we first solve the continuity assumption, it is then

difficult to exploit the axiom of bulk-boundary factorization. So we will first solve the

latter axiom.

Solving the axiom of bulk-boundary factorization. We will write the general so-

lution of this axiom in terms of some arbitrary structure constants Br,η(j, `), and H+
3

conformal blocks built from known Liouville theory conformal blocks. The relevant con-

formal blocks are most easily defined by decomposing the boundary regime Ansatz (3.24),

〈
Vα1(z1)Vα2(z2)s+B− 1

2b
(y1)s−B− 1

2b
(y2)s+

〉
=

∑

η1,η2=±

∫
dβ BL

s+
(α1, β− η1

2b )C
L
s+

(Q−β+ η1

2b ,− 1
2b |

s−

β)BL
s+

(α2, β− η2

2b )C
L
s+

(Q−β+ η2

2b ,− 1
2b |

s−

β)

×
(
RL

s−,s+
(β)

)−1
Gβ,η1,η2(α1, α2|z1, z2, y1, y2) . (3.25)
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A basis of solutions of the Knizhnik-Zamolodchikov equations in the boundary regime

is obtained by multiplying the conformal blocks Gβ,η1,η2(α1, α2|z1, z2, y1, y2) with the

prefactor (first line) of (3.24), while assuming the relation (3.5) between H+
3 spins

and Liouville momenta. We will still denote the resulting H+
3 conformal blocks as

Gβ,η1,η2(α1, α2|z1, z2, y1, y2), and represent them schematically as

Gβ,η1,η2(α1, α2|z1, z2, y1, y2) =

α2

α2

α1

α1

η2η1 β
, (3.26)

where the wiggly lines denote degenerate fields of momentum − 1
2b , and the discrete

indices ηi = ± indicate the fusion channels β− ηi

2b of these degenerate boundary fields B− 1
2b

with another boundary field Bβ .

The general solution of the bulk-boundary factorization axiom is obtained by replacing

the Liouville structure constants BL
s+

CL
s+

in eq. (3.25) with arbitrary quantities Br,η(j, `),

S =
∑

η1,η2=±

∫
dβ Br,η1(j1, `)Br,η2(j2, `)

(
RH

r (`)
)−1 Gβ,η1,η2(α1, α2|z1, z2, y1, y2) . (3.27)

(Recall the relation (2.32) between the Liouville and H+
3 boundary reflection coefficients.)

We have indeed chosen our basis of conformal blocks for its factorizing behaviour in the

boundary factorization limit,

lim
z1−z̄1→0

α2

α2

α1

α1

η2η1 β
= |w − z1|2∆β

α1

α1

η1
β ×

α2

α2

η2
β , (3.28)

where the two factors depend on β, η1, j1, z1, y1, w and β, η2, j2, z2, y2, w respectively. Here

w is the position of the intermediate channel field of momentum β on the boundary of the

disc.

The quantities Br,η(j, `) can be interpreted as the bulk-boundary structure constants

of the H+
3 model. For given values of the bulk and boundary spins j and `, there are

two such structure constants labelled by η = ±. The reason for this fact, and a detailed

analysis of the H+
3 bulk-boundary two-point function, are given in section 5.

Therefore, thanks to the bulk-boundary factorization axiom, our task is now reduced

to determining the structure constants Br,η(j, `), i.e. showing that they agree with the

Liouville structure constants in eq. (3.25). For this, we need the continuity assumption.

Solving the continuity assumption. We recall that the continuity assumption deter-

mines the terms which involve the −1
b channel in the fusion product of the two boundary

degenerate fields (3.16). In order to exploit this assumption, it is therefore convenient to use
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a new basis of conformal blocks (where we omit the dependence on (α1, α2|z1, z2, y1, y2)):

Gβ,0 = 0

ββ
, Gβ,− 1

b
,0 =

−1
b

ββ
,

Gβ,− 1
b
,+ =

−1
b

β − 1
2bβ + 1

2b

, Gβ,− 1
b
,− =

−1
b

β + 1
2bβ − 1

2b

.(3.29)

The relation to our previous basis of conformal blocks is

Gβ,η,η = Fη,0(β) Gβ+ η
2b

,0 + Fη,− 1
b
(β) Gβ+ η

2b
,− 1

b
,0 , Gβ,η,−η = Gβ,− 1

b
,−η , (3.30)

for some Liouville fusing matrix elements Fη,0(β), Fη,− 1
b
(β) which depend on β but not

on α1, α2. (These fusing matrix elements are known explicitly, but we do not need their

precise form.)

Let us rewrite the solution of the factorization axiom (3.27) in terms of such conformal

blocks:

S =

∫
dβ

(
RH

r (`)
)−1

(
Br,+(j1, `)Br,−(j2, `)Gβ,− 1

b
,− + Br,−(j1, `)Br,+(j2, `)Gβ,− 1

b
,+

)

+
∑

η

∫
dβ

(
RH

r (`)
)−1

Br,η(j1, `)Br,η(j2, `)
(
Fη,0(β) Gβ+ η

2b
,0+Fη,− 1

b
(β) Gβ+ η

2b
,− 1

b
,0

)
.

(3.31)

The continuity assumption determines the terms in Gβ,− 1
b
,±, and therefore the values of

the products Br,+(j1, `)Br,−(j2, `) and Br,−(j1, `)Br,+(j2, `). All our conformal blocks

are indeed linearly independent, up to the identity of blocks labelled by momenta with

identical conformal weights, for instance Gβ,− 1
b
,+ = GQ−β,− 1

b
,−. One should also take

into account corresponding identities among the structure constants, namely Br,η(j, `) =

RH
r (`)Br,−η(j,−` − 1).

The resulting values of Br,+(j1, `)Br,−(j2, `) and Br,−(j1, `)Br,+(j2, `) must be the

ones appearing in the decomposition of our Ansatz (3.25), because we already know the

Ansatz to be a solution of the continuity constraints. This determines Br,±(j, `) up to a j-

independent rescaling, Br,±(j, `) → fr(`)
±1Br,±(j, `). A non-trivial rescaling (fr(`) 6= ±1)

can however be excluded by exploiting the terms in Gβ+ η
2b

,− 1
b
,0, which are again determined

by the continuity constraint. This shows that the Ansatz is the only solution to our axioms.

Therefore, our lack of control over the Gβ+ η
2b

,0 terms has not prevented us from fully

determining the bulk two-point function, thanks to the bulk-boundary factorization axiom.

In the standard Cardy-Lewellen formalism, the bulk two-point function would be fully de-

termined from the disc one-point and sphere three-point functions, and the bulk-boundary

factorization axiom would then come as a consistency check on these quantities. In our

case, this consistency check is weaker, because it can involve only the part of the axiom

which we do not use for determining the bulk two-point function.
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Generalization. This reasoning can be generalized to arbitrary H+
3 bulk correlators on

the disc. Indeed, the existence of a bulk regime where the H+
3 correlators are known (thanks

to the bulk OPE) gives a nontrivial content to the continuity assumption. Moreover, our

determination of the H+
3 bulk two-point function also yields the knowledge of the H+

3 bulk-

boundary two-point function. Therefore, we can in principle apply the bulk-boundary

OPE (3.13) to arbitrary H+
3 bulk correlators, which proves our main result (3.18) for

correlators of bulk fields and boundary fields rΨ
`
r which preserve the boundary condition.

Boundary condition changing operators rΨ
`
r′ are more challenging: we leave their case as

a conjecture, which is supported by our check of all the axioms, and the analysis of the

boundary two-point function in section 4.

3.4 H+
3 -Liouville relation in the m-basis

The m-basis relation may be useful for the study of the SL(2, R)/U(1) coset model, which

is formally quite close to the H+
3 -model in the m basis. The relation is obtained by straight-

forward application of the integral transforms (2.11), (2.26) to the µ-basis result (3.18):

〈
n∏

a=1

Φja

ma,m̄a
(za)

m∏

b=1

Ψ`b
mb,ηb

(wb)

〉

∝
n∏

a=1

N ja

ma,m̄a

m∏

b=1

N `b
mb,ηb

∫

R

du

|u|

∫
d2n′+m′

y
n∏

a=1

(
µ−ma

a µ̄−m̄a
a

) m∏

b=1

|νb|−mbsgnηb(νb)

× |Θn,m|k
2

〈
n∏

a=1

Vαa(za)

m∏

b=1

Bβb
(wb)

n′∏

a′=1

V− 1
2b

(ya′)

m′∏

b′=1

B− 1
2b

(yb′)

〉
. (3.32)

The non-trivial content of the formula is the fact that the Jacobian for Sklyanin’s separation

of variables (3.10) (which gives µa, νb as a function of the positions ya′ , yb′ of the degenerate

fields) is |u|−2|Θn,m|∏n
a=1 |µa|2

∏m
b=1 |νb|. The integral over y should be understood as

spanning the whole range of complex or real values, and to include the combinatorial factors

due to the invariance of µa, νb under permutations of ya′ or yb′ ; for instance in the case of

the bulk two-point function n = 2,m = 0 we have
∫

d2y ≡
∫
=y1>0 d2y1 + 1

2

∫
R2 dy1 dy2. The

integral over |u| can be performed explicitly knowing that µa, νb all have a factor |u|, the

result is δ(i
∑n

a=1(ma + m̄a) + i
∑m

b=1 mb). (Recall that in the H+
3 model physical values

of ma + m̄a and mb are pure imaginary.) The sum over sgnu then affects the Liouville

boundary parameters, which are still given by eq. (3.19) but kept implicit in our formula.

The normalization factors N ja

ma,m̄a
, N `b

mb,ηb
are given in (2.12), (2.27), and we do not write

the j, `,m-independent normalization factor.

A few cases are particularly simple. If 2n + m − 2 = 0 the H+
3 -Liouville relation

does not involve Liouville degenerate fields. This happens for the bulk one-point function

(n = 1,m = 0) and the boundary two-point function (n = 0,m = 2). If 2n + m − 2 = 1

the relation involves one boundary degenerate field, and therefore no singularity can occur

from the collision of two degenerate fields. This happens for the bulk-boundary two-point

function (n = 1,m = 1) and the boundary three-point function (n = 0,m = 3).

– 20 –



J
H
E
P
0
1
(
2
0
0
7
)
0
5
7

4. Boundary two-point function

The boundary two-point function for open strings living on a single AdS2 brane is already

known, eq. (2.28), and we reproduce it here up to irrelevant factors:

〈
Ψ`1(t1|w1)Ψ

`2(t2|w2)
〉

r
= δ(`1 + `2 + 1)δ(t12) + δ(`1 − `2)R̃

H
r (`1)|t12|2`1 . (4.1)

Up to a change of the reflection number R̃H
r (`1), this is actually the most general form

of the two-point function which is compatible with the SL(2, R) symmetry (2.23), if the

boundary fields follow the standard SL(2, R) transformation rule (2.22). And indeed, the

equations in [10] which yielded that solution can also be used to derive a boundary two-

point function between different branes, which is of the same form [20]. The resulting

reflection number R̃H ?
r,r′ (`1) however has branch cuts as a function of the boundary spin `.

While this is not an inconsistency, this is certainly a strange feature.

Our relation with Liouville theory (3.18) however predicts

〈
rΨ

`1(t1|w1)r′Ψ
`2(t2|w2)r

〉

= δ(`1 + `2 + 1)δ(t12) + δ(`1 − `2)R̃
H
r,r′(`1)|t12|2`1e−

1
2
(k−2)(r−r′)sgnt12 , (4.2)

with the t-basis reflection number

R̃H
r,r′(`) =

π

Γ(2` + 1)

RL
r

2πb
+ i

4b
, r′

2πb
− i

4b

(β)

sin(π` − i r−r′

2b2
)

=
π

Γ(2` + 1)

RL
r

2πb
− i

4b
, r′

2πb
+ i

4b

(β)

sin(π` + i r−r′

2b2
)

, (4.3)

with β = b(` + 1) + 1
2b . This reflection number is meromorphic in `, with no hint of a

branch cut. And the factor e−
1
2
(k−2)(r−r′)sgnt12 contradicts the SL(2, R) symmetry.

We will argue that (4.2) is actually the correct H+
3 boundary two-point function, and

that the result of [20] is incorrect because it relies on erroneous symmetry assumptions. We

will indeed show that the H+
3 boundary condition changing operators should not belong

to representations of SL(2, R) but rather to representations of the universal covering group

S̃L(2, R).

NB: In this section we omit the dependence of two-point function in the worldsheet

coordinates w1, w2. This dependence is always a factor |w1 − w2|−2∆`1 .

4.1 S̃L(2, R) symmetry

Let us investigate how the assumption of S̃L(2, R) symmetry would constrain the boundary

two-point function. To begin with, we study the possible actions of that group on the

boundary fields rΨ
`(t|w)r′ .

Consider a timelike coordinate T on S̃L(2, R) such that T (id) = 0 and T (−id) = 1.

(As a manifold, S̃L(2, R) is identical to the Anti-de Sitter space AdS3.) Then the set of

S̃L(2, R) elements such that 0 ≤ T < 1 can be identified with the group SL(2, R)/{id,−id}.
We parametrize elements of S̃L(2, R) as G = (g, [T ]) where g is an element of the group

SL(2, R)/{id,−id}, and [T ] is the integer part of T .
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The natural action of the group S̃L(2, R) on the parameter t is simply (g, [T ]) · t = g · t.
It is however possible to define an action of S̃L(2, R) on the t-basis fields Ψ`(t) which does

not reduce to the ordinary SL(2, R) action (g, [T ]) · Ψ`(t) = |ct − d|2`Ψ`(g · t) as follows:

for an S̃L(2, R) group element G = (g, [T ]) and a real number t consider the number N

of times g · t crosses t = +∞ when G continuously varies from G = id fSL(2,R)
= (id, 0) to

G = (g, [T ]). Then for any fixed number κ the following is an action of S̃L(2, R) on t-basis

fields:

G · Ψ`(t) = (g, [T ]) · Ψ`(t) = |ct − d|2`eκN(g,[T ],t)Ψ`(g · t) . (4.4)

How would invariance under such S̃L(2, R) transformations constrain the boundary two-

point function? Using N(g, [T ], t) = [T ] + 1
2 + 1

2sgn(t − d/c), we have

〈
G · rΨ

`1(t1|w1)r′ G · r′Ψ
`2(t2|w2)r

〉

= |ct1 − d|2`1 |ct2 − d|2`2e
1
2
κ(sgn[t1−d/c]−sgn[t2−d/c])

〈
rΨ

`1(g · t1|w1)r′Ψ
`2(g · t2|w2)r

〉

= |ct1 − d|2`1 |ct2 − d|2`2e
1
2
κ(sgnt12−sgn[g·t1−g·t2])

〈
rΨ

`1(g · t1|w1)r′Ψ
`2(g · t2|w2)r

〉
. (4.5)

The requirement that this equals
〈
rΨ

`1(t1|w1)r′Ψ
`2(t2|w2)r

〉
leads to

〈
rΨ

`1(t1|w1)r′Ψ
`2(t2|w2)r

〉
= δ(`1 + `2 + 1)δ(t12) + δ(`1 − `2)R̃

H
r,r′(`1)|t12|2`1e−

1
2
κsgnt12 ,

(4.6)

for some t-basis reflection number R̃H
r,r′(`1). Therefore, the two-point function (4.2) de-

rived from the H+
3 -Liouville relation is compatible with S̃L(2, R) symmetry provided the

boundary fields transform as eq. (4.4) with

κ = (k − 2)(r − r′) . (4.7)

We have thus found a nice geometrical interpretation for the two-point function derived

from the H+
3 -Liouville relation. This is of course not in itself evidence for the correctness of

that relation. We will look for such evidence in the comparison with N=2 Liouville theory,

and in the classical analysis of the H+
3 sigma model.

4.2 Comparison with N=2 Liouville theory

An H+
3 mod U(1) coset model can be obtained from the H+

3 model by gauging, and this

coset model is known to be identical to the 2d black hole coset model SL(2, R)/U(1) [2]. It

is also known that the N=2 supersymmetric version of the SL(2, R)/U(1) coset is related

via mirror symmetry to N = 2 Liouville theory [21 – 23]. The boundary two-point function

on maximally symmetric D-branes in N=2 Liouville theory with central charge c = 3+ 6
k−2

is thus expected to be related to the boundary two-point function on our AdS2 branes in

the H+
3 model at level k. We will not try to check this expectation in full detail, rather

we will focus on the non-trivial part of the expected relation, namely the relation between

the boundary reflection coefficients in the H+
3 model and N=2 Liouville theory.
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The boundary reflection coefficient in N=2 Liouville theory was determined in [24].

The D-branes which should be compared to the AdS2 branes in H+
3 are the B-branes [15].

The relation between the parameters r of our AdS2 branes and the parameters J of the

N=2 Liouville B-branes can be deduced from the explicit formulas for the corresponding

one-point functions: r = − iπ
k−2(2J + 1). The boundary fields which span the spectrum

of open strings between such B-branes are called B
`(s)
m , λB

`(s)
m , λ̄B

`(s)
m , λλ̄B

`(s)
m , where `

and m correspond to the H+
3 boundary spin and m-basis momentum, s is a fermionic

label which we will ignore because the s-dependence of the N=2 Liouville boundary two-

point function is trivial, and λ, λ̄ are boundary fermions such that λλ̄ + λ̄λ = 1. We will

compare the spectrum of open strings in H+
3 with the bosonic sector of the N=2 Liouville

boundary spectrum; for each choice of `,m this sector is two-dimensional and spanned by

λ̄λB
`(s)
m , λλ̄B

`(s)
m .

Let us write explicitly the reflection matrix for such N=2 Liouville boundary fields [24]

(section 6.2 therein) with our notations and our own field normalizations chosen for later

convenience. (Changing field normalizations amounts to conjugating the matrix M with a

diagonal matrix.)

(
λλ̄B`

m

λ̄λB`
m

)
=

4

π
Γ(−` + m)Γ(−` − m)Γ(2` + 1)R̃H

r,r′(`) ×M
(

λλ̄B−`−1
m

λ̄λB−`−1
m

)
, (4.8)

M =




∑
± ±e∓

r−r′

2b2 sin π(m ± `) e−iπme
r−r′

2b2 sin 2π`

eiπme−
r−r′

2b2 sin 2π`
∑

±∓e±
r−r′

2b2 sin π(m ± `)


 .

The m-basis boundary fields Ψ`
m,η of the H+

3 model were defined in (2.26). Our H+
3

boundary two-point function (4.2) has the following form in the m-basis:

〈
rΨ

`1
m1,η1

(w1)r′Ψ
`2
m2,η2

(w2)r

〉
= δ(i(m1 + m2)) ×

[
δ(`1 + `2 + 1)2πδη1η2

+ δ(`1 − `2)
4

π
Γ(−`1 + m1)Γ(−`1 − m1) cos π

2 (`1 − m1 + η1) cos π
2 (`1 + m1 + η2)

×iη1+η2Γ(2`1 + 1)R̃H
r,r′(`1)

{
(−1)η1 sin(π` + i r−r′

2b2
) + (−1)η2 sin(π` − i r−r′

2b2
)
}]

. (4.9)

If we now assume the following identification between the N=2 Liouville fields λλ̄B`
m, λ̄λB`

m

and the H+
3 model fields Ψ`

m,η, which involves an implicit Wick rotation of the allowed

values of m,

λλ̄B`
m ' Ψ`

m,0 + Ψ`
m,1 = 2

∫ ∞

0
dt t−`−1+mΨ`(t) , (4.10)

λ̄λB`
m ' eiπm(Ψ`

m,0 − Ψ`
m,1) = 2eiπm

∫ 0

−∞
dt |t|−`−1+mΨ`(t) , (4.11)

then the H+
3 reflection matrix deduced from our m-basis boundary two-point function (4.9)

agrees with the N=2 Liouville boundary reflection matrix (4.8).
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4.3 Classical analysis

We should be able to study such a basic property of the theory of open strings in H+
3

as its symmetry group without solving the full quantum theory. In the cases of closed

strings and open strings which preserve boundary conditions, the minisuperspace limit

reduces our conformal field theory to the quantum mechanics of a point particle in H+
3 and

AdS2 respectively, and therefore gives substantial insight into the spectrum and symmetry

properties. However, the theory of open strings stretched between two different AdS2

branes does not have such a minisuperspace limit, because such open strings can not

shrink to point particles. However, we will be able to gain some insight from analyzing

their classical worldsheet dynamics.

In order to predict the symmetry group, we should derive the spectrum of a timelike

generator R of the Lie algebra s`2(R). (Such a generator geometrically acts as a rotation of

the AdS2 branes.) Indeed, such a generator must satisfy exp 2πiR = −id if the symmetry

group is SL(2, R). On the other hand, no such relation exists in the universal covering

group S̃L(2, R). Nevertheless, the transformation law (4.4) of the boundary fields suggests

that the value of exp 2πiR applied to such fields should be exp 2πiR = e(k−2)(r−r′). The

operator exp 2πiR is indeed identified with the S̃L(2, R) group element G = (id, 1), and

for any real number t we have N(id, 1, t) = 1. The spectrum of the quantum operator R is

therefore expected to be

Spec(R) = (k − 2)
r − r′

2πi
+ Z . (4.12)

Of course, we do not expect the classical analysis to fully reproduce this spectrum, and in

particular not the Z quantization. In order to show that the symmetry group is S̃L(2, R)

and not SL(2, R), it is enough to demonstrate that the spectrum is not purely real. We

will actually even find indications of an imaginary part proportional to r − r′.

In principle one can obtain the full set of classical solutions of the H+
3 sigma-model,

but it is not easy to extract predictions for the spectrum of the rotation generator R. This

is due to the pure imaginary B-field in the theory on worldsheets with Lorentzian signature

which prevents classical strings from evolving normally in time. On the other hand, the

model on Euclidean worldsheets has many classical solutions, but it is not obvious how to

relate the spectrum of R evaluated on classical solutions with the quantum spectrum (4.12).

We will avoid these subtleties by considering a classical solution which does not depend on

the worldsheet time and therefore makes sense for both signatures. Up to simple symmetry

transformations, this is actually the unique time-independent solution:

h = exp Ω
(
r + (r′ − r)

σ

π

)
, (4.13)

where Ω =

(
0 1

1 0

)
and σ is the space-like coordinate on the worldsheet. The complex

coordinate on the upper half-plane worldsheet is z = eτ+iσ; our solution corresponds to
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inserting a boundary operator at z = 0:

+
Ψ rr′

h(z, z̄)

z = z̄

Our solution is easily found to satisfy the following requirements:

1. Solving the bulk equations of motion. This is because h can be factorized into holo-

morphic and antiholomorphic factors.

2. Solving the boundary conditions at z = z̄. In terms of the currents

J = k∂hh−1 , J̄ = kh−1∂̄h = J† , (4.14)

these boundary conditions are of the type

J†Ω† + ΩJ =
z=z̄

0 . (4.15)

This implies the vanishing of the derivative of Tr Ωh along the boundary, so that

Tr Ωh =
z=z̄

{
2 sinh r , <z > 0

2 sinh r′ , <z < 0
, (4.16)

as required by the definition of the brane parameters r, r′ (2.18).

3. Corresponding to an affine primary field insertion at z = 0. This means that the

currents behave as

J(z) =
k

z
j0 + k

∞∑

n=1

j−nzn−1 . (4.17)

We can now evaluate the values of the conserved momenta associated to s`(R) transfor-

mations:

i

∫ π

0
eτdσ

(
Ω−1J†Ω + J

)
= kj0 = k

r − r′

2πi
Ω . (4.18)

The matrix 1
2Ω satisfies exp 2πi(1

2Ω) = −id and can therefore be identified with the R

generator of the compact, timelike direction of s`(R). The associated conserved charge of

our classical solution is

Rcl = k
r − r′

2πi
. (4.19)

This agrees with the imaginary part of the spectrum of the quantum operator R (4.12),

up a term which is subleading as k → ∞. This is consistent with the classical analysis

becoming reliable only in the large k limit, since k appears as a factor in the H+
3 action (2.4)

and therefore plays the rôle of the inverse Planck constant.
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5. Bulk-boundary two-point function

Like the boundary two-point function, the case of the bulk-boundary two-point function

will provide a nontrivial check of our expression for H+
3 disc correlators in terms of Liouville

theory. We will indeed use a minisuperspace analysis to independently predict the large

level limit of the bulk-boundary two-point function.

According to the formula (3.18), the H+
3 bulk-boundary two-point function is

〈
Φj(µ|z)Ψ`(ν|w)

〉
r
∝ δ(µ + µ̄ + ν)|u|

∣∣∣∣
(z − z̄)(z − w)(z̄ − w)

(w − y)(z − y)(z̄ − y)

∣∣∣∣
k−2
2

×
〈
Vα(z) r

2πb
+ i

4b
sgnνBβ(w) r

2πb
− i

4b
sgnνB− 1

2b
(y)

〉
, (5.1)

where the Liouville momenta α, β are functions of j, ` (3.5), the position y = −µz̄w+µ̄zw+νzz̄
µz+µ̄z̄+νw

of the Liouville degenerate field is the zero of the function ϕ(t) (3.6), we use u = µz +

µ̄z̄ + νw (3.7), and we omit the numerical factors. Here is a picture of this H+
3 -Liouville

relation:

+
Φj(µ|z)

+
Ψ`(ν|w)

r r

'

+
Vα(z)

+
Bβ(w)
�

B− 1
2b

(y)

r
2πb − i

4bsgnν r
2πb + i

4b sgnν r
2πb − i

4bsgnν

The Liouville boundary parameter is therefore controlled by ν, which we spell out explicitly

in terms of the separated variables (u, y) thanks to eq. (3.10):

ν = u
w − y

|w − z|2 . (5.2)

5.1 SL(2, R) symmetry

We first check that our formula for the bulk-boundary two-point function obeys the SL(2, R)

symmetry requirement (2.23). The general solution to this requirement is

〈
Φj(x|z)Ψ`(t|w)

〉
r

= |z − w|−2∆` |z − z̄|−2∆j+∆` (5.3)

×|x+it|2`|x+x̄|2j−̀ Γ(−2j−`−1)

2π

∑

±
BH

r,±(j, `) e±i π
2
(2j+`+1)sgn<x.

Like in the case of the bulk one-point function (which is obtained for ` = 0), the SL(2, R)

symmetry allows an arbitrary dependence on sgn<x. Here we choose e±i π
2
(2j+`+1)sgn<x

as a basis of functions of sgn<x, and we introduce the two H+
3 bulk-boundary structure

constants BH
r,±(j, `). The factor Γ(−2j−`−1)

2π is chosen for later convenience.

We now transform this bulk-boundary two-point function into the µ-basis (defined by

equations (2.10), (2.24)) for the purpose of the comparison with the formula predicted by

our H+
3 -Liouville relation. The Fourier integral over (x, t) can be performed by making the
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change of variables x = x′ − it and then parametrizing x′ ∈ C in terms of real variables

σ, τ such that x′ = σ(iτ − µ̄). (Then the integral over σ is of the type (B.3).)

〈
Φj(µ|z)Ψ`(ν|w)

〉
r

= |z − z̄|∆`−2∆j |z − w|−2∆`

× δ(µ + µ̄ + ν) |µ|2j+2|ν|−`

∫ ∞

−∞
dτ |τ |−2j−`−2|τ − iµ|2`BH

r,sgnτ (j, `) . (5.4)

The remaining integral over τ converges provided µ is not pure imaginary. It can be

performed using the integral formula (B.1) which yields:

〈
Φj(µ|z)Ψ`(ν|w)

〉
r

= |z − z̄|∆`−2∆j |z − w|−2∆`

× δ(µ + µ̄ + ν) |µ|`+1|ν|−` Γ(−2j − 1 − `)Γ(2j + 1 − `)

Γ(−2`)

∑

±
BH

r,±(j, `)F±
j,`(µ) , (5.5)

where we define

F±
j,`(µ) ≡

(
1

2
± 1

2

=µ

|µ|

)`+ 1
2

F

(
2j +

3

2
,−2j − 1

2
,
1

2
− `;

1

2
∓ 1

2

=µ

|µ|

)
. (5.6)

The Liouville correlator in (5.1) can be decomposed into Liouville structure constants,

and conformal blocks which capture all the dependence on the worldsheet coordinates

z,w, y. The properties of the relevant blocks have been studied in [25], and they are

proportional to the functions F±
j,`(µ) in (5.6).5 What is however not obvious, but necessary

for the SL(2, R) symmetry, is that the coefficients of this decomposition are completely

independent of µ, ν, in spite of the sgnν dependence of the Liouville boundary parameter.

In order to write the decomposition explicitly, let us consider the Liouville factoriza-

tion limit y → w when the degenerate boundary field B− 1
2b

collides with Bβ. This limit

corresponds to ν = 0, and therefore µ pure imaginary (using µ+ µ̄+ν = 0). The behaviour

of our conformal blocks F±
j,`(µ) in this limit is actually determined by lim

ν→0
sgn=µ = −sgnu.

Namely, F+ is regular if sgnu = − and F− is regular if sgnu = +. The Liouville correlator

in (5.1) is then decomposed into regular blocks, and structure constants where the bound-

ary parameters can be determined from the identity sgnν = sgnu sgn(w−y). We thus find

the following decomposition, where ε = sgnu:

〈
Φj(µ|z)Ψ`(ν|w)

〉
r

= |z − z̄|∆`−2∆j |z − w|−2∆`δ(µ + µ̄ + ν)

×
[
CL

sε
(β |

s−ε

− 1
2b , Q − β − 1

2b)B
L
sε

(α, β + 1
2b)|µ|

`+1|ν|−`F−ε
j,` (µ)

+CL
sε

(β |
s−ε

− 1
2b , Q − β + 1

2b)B
L
sε

(α, β − 1
2b )|µ|

−`|ν|`+1F−ε
j,−`−1(µ)

]
, (5.7)

5According to [25], the relevant Liouville blocks are indeed powers of |z − w|, |z − y|, |w − y|, times

hypergeometric functions of the type F (b−1(2α+β−Q), b−1(β− 1
2b

), 2b−1(β− 1
2b

); z̃) with z̃ = (z−z̄)(y−w)
(z−w)(y−z̄)

=

1 + µ

µ̄
. The relation with F±

j,`(µ) is established thanks to the quadratic transformation (B.4).
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where s± = r
2πb ∓ i

4b , and the Liouville bulk-boundary structure constant BL
s (α, β) (C.4)

and degenerate boundary three-point structure constant CL
s (β |

s′
− 1

2b , Q − β ± 1
2b) (C.7) are

explicitly known.

The Liouville correlator in (5.1) is known to have an alternative decomposition [25],

which leads to equation (5.7) being also valid for ε = −sgnu. (The equality of these

decompositions can be exploited in order to derive a 1
2b -shift relation for the Liouville bulk-

boundary structure constant.) We will now use these two decompositions ε = ±, while

rewriting the functions F−ε
j,−`−1(µ) in terms of F±

j,`(µ) with the help of

∣∣∣∣
ν

4µ

∣∣∣∣
2`+1 Γ(−` + 1

2 )Γ(−` − 1
2)

Γ(−` − 2j − 1)Γ(−` + 2j + 1)
F ε

j,−`−1 = F−ε
j,` +

cos π2j

cos π`
F ε

j,` . (5.8)

Not forgetting CL
s (β |

s′
− 1

2b , Q− β + 1
2b) = 1, we find that the H+

3 bulk-boundary two-point

function deduced from the H+
3 -Liouville relation is indeed of the form (5.5) dictated by

SL(2, R) symmetry, with structure constants

BH
r±(j, `) =

24`+2Γ(−2`)

Γ(−` − 1
2)Γ(−` + 1

2 )
BL

r
2πb

∓ i
4b

(α, β − 1
2b) . (5.9)

(We omit numerical factors.)

5.2 Minisuperspace analysis

Let us compute the minisuperspace limit k → ∞ of our H+
3 bulk-boundary two-point

function. Thanks to SL(2, R) symmetry, this reduces to computing the k → ∞ limit of the

structure constants BH
r,±(j, `) computed in [25] and reproduced in the appendix, eq. (5.9).

Using the explicit formula for the Liouville bulk-boundary structure constants BL (C.4),

we compute their semi-classical limit b2 = 1
k−2 → 0 (assuming r, j, ` stay fixed):

lim
b→0

BL
r

2πb
∓ i

4b

(α, β − 1
2b ) = 4π(−µLπb−2e2r)−1−j− `

2

∫

iR

dp

2πi
e(−2r±iπ)p Γ(p+`+2j+2)Γ(p+`+1)Γ(−p−2j−1)Γ(−p)

Γ(`+1)Γ(−2j−1)

= 4π(µπb−2)−1−j− `
2

×
{

e∓
iπ
2

(2j−̀+2) Γ(−2j+`)Γ(2j+2)

Γ(−2j)
e(2j−`)rF (`+1,−2j+`,−2j;−e−2r)

+e±
iπ
2

(2j+`+2)Γ(2j+`+2)e−(2j+`+2)rF (`+1, 2j+`+2, 2j+2;−e−2r)

}
,

(5.10)

where we make use of the asymptotic behaviour of the special functions (A.8)–(A.11) and

of the auxiliary formula

e(−2r±iπ)p = e−2r e∓iπ` sin π(2j + p) − e∓iπ2j sin π(` + p)

sinπ(2j − `)
. (5.11)
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Let us now predict the minisuperspace limit of the bulk-boundary structure constants

BH
r,±(j, `) by an independent calculation. In the minisuperspace limit, the H+

3 model path-

integral reduces to the integral over worldsheet-independent elements h of H+
3 :

〈
Φj(x|z)Ψ`(t|w)

〉mini

r
≡

∫

H+
3

dh Φj(x|h)Ψ`(t|h)δ(Tr [hΩ] − 2 sinh r) . (5.12)

Using the explicit formulas for the H+
3 element h (2.3) and the classical fields Φj(x|h) (2.5)

and Ψ`(t|h) (2.20), the minisuperspace computation is performed as follows:

〈
Φj(x|z)Ψ`(t|w)

〉mini

r

= −2j+1

π

∫
d2γdφe2φδ(eφ(γ+γ̄)−2 sinh r)(|x−γ|2eφ+e−φ)2j(|it+γ|2eφ+e−φ)`

= −2j+1

2π

∫
d2γdu

u2j+`+1
δ(<γ−sinh r)(|u(x+it)−γ|2+1)2j(|γ|2+1)`

= |x + x̄|2j−`|x + it|2`

×Γ(−4j − 1)(2 cosh r)2j+`+1

Γ(−2j)Γ(−2j − 1)

∫ ∞

0

du

u2j+`+2
(u2 − 2u tanh r sgn<x + 1)2j+ 1

2 , (5.13)

where γ was shifted γ → γ − it and rescaled γ → e−φγ, we introduced u = eφ, and we

reached the last expression by the rescaling u → (1+|γ|2)<x
|x+it|2 cosh r

u which allowed the integral

over γ to be performed.

The remaining integral over u can be performed with the help of the formula (B.1).

The minisuperspace bulk-boundary two-point function is then found to be of the form

dictated by the spacetime SL(2, R) symmetry (5.4), with the structure constants:

BH,mini
r,± (j, `) = (2 cosh r)2`+1

×
{

e∓
iπ
2

(2j−`+2) Γ(−2j + `)Γ(2j + 2)

Γ(−2j)
e(2j−`)rF (` + 1,−2j + `,−2j;−e−2r)

+ e±
iπ
2

(2j+`+2)Γ(2j + ` + 2)e−(2j+`+2)rF (` + 1, 2j + ` + 2, 2j + 2;−e−2r)

}
. (5.14)

Up to a renormalization of the fields, this agrees with the prediction (5.10) from our H+
3 -

Liouville relation.

A. Special functions

The function γ(x) is built from Euler’s Gamma function:

γ(x) =
Γ(x)

Γ(1 − x)
. (A.1)

We use the special functions Γb, Υb and Sb which usually appear in the study of Liouville

theory at parameter b > 0 and background charge Q = b+b−1. We use the same conventions
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as [26], where some more details can be found. The following definitions are valid for

0 < <x < Q:

logΓb(x) =

∫ ∞

0

dt

t

[
e−xt − e−Qt/2

(1 − e−bt)(1 − e−t/b)
− (Q/2 − x)2

2
e−t − Q/2 − x

t

]
, (A.2)

logΥb =

∫ ∞

0

dt

t

[(
Q

2
− x

)2

e−t − sinh2(Q
2 − x) t

2

sinh bt
2 sinh t

2b

]
, (A.3)

logSb =

∫ ∞

0

dt

t

[
sinh(Q

2 − x)t

2sinh( bt
2 )sinh( t

2b )
− (Q − 2x)

t

]
. (A.4)

These functions can be extended to a meromorphic function on the complex plane thanks

to the shift equations

Γb(x + b) =

√
2πbbx− 1

2

Γ(bx)
Γb(x) , Γb(x + 1/b) =

√
2πb−

x
b
+ 1

2

Γ(x/b)
Γb(x) (A.5)

Υb(x + b) =
Γ(bx)

Γ(1 − bx)
b1−2bxΥb(x) , Υb(x + 1/b) =

Γ(x/b)

Γ(1 − x/b)
b2x/b−1Υb(x) (A.6)

Sb(x + b) = 2sin(πbx)Sb(x) , Sb(x + 1/b) = 2sin(πx/b)Sb(x) (A.7)

The three special functions are related: Sb(x) = Γb(x)
Γb(Q−x) and Υb(x) = 1

Γb(x)Γb(Q−x) .

Using the integral representations for the special functions, one can study their be-

haviour for b → 0 while keeping the quantity x fixed:

Γb(bx) → (2πb3)
1
2
(x− 1

2
)Γ(x) , Γb(Q − bx) →

(
b

2π

) 1
2
(x− 1

2
)

, (A.8)

Υb(bx) → 1

bx− 1
2 Γ(x)

, (A.9)

Sb(bx) → (2πb2)x−
1
2 Γ(x) , Sb(

1

2b
+ bx) → 2x− 1

2 , (A.10)

∏

±
Sb(

1

2b
+ bx ± i

r

πb
) →

(
cosh r√

2

)1−2x

. (A.11)

B. Useful formulas

The following formula [27] is used in section 5.
∫ ∞

0
dxxα(1 ± 2x tanh r + x2)β =

Γ(α + 1)Γ(−2β − α − 1)

Γ(−2β)

× (2 cosh r)−β− 1
2 e±r(β+ 1

2
)F

(
−α − β − 1

2
, α + β +

3

2
,
1

2
− β;

1

e±2r + 1

)
. (B.1)

The following formulas are useful for transforming some correlators in the (x, t) basis into

correlators in the (µ, ν) basis.
∫

C

d2x ei=µx|x|2α = πγ(α + 1)|µ|−2α−2 , (B.2)

∫

R

dt f(sgnt)|t|αe−itν = |ν|−α−1Γ(α + 1)
[
f(sgnν)e−i π

2
(α+1) + f(−sgnν)ei π

2
(α+1)

]
. (B.3)
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The conformal blocks which are relevant for section 5 involve hypergeometric functions

which can undergo a quadratic transformation:

F (a, b, 2b; z) =
(

1
2 + 1

4
2−z√
1−z

) 1
2
−b

(1 − z)−
a
2 × F

(
b − a + 1

2 , a − b + 1
2 , b + 1

2 ; 1
2 − 1

4
2−z√
1−z

)
.

(B.4)

C. Some Liouville theory formulas

We mostly follow conventions of [26]. We consider Liouville theory with parameter b > 0,

background charge Q = b + b−1, central charge c = 1 + 6Q2, and interaction strength µL.

One-point function on a disc:

〈Vα(z)〉s = |z − z̄|−2∆α(πµLγ(b2))
Q−2α

2b

×Γ(1 − b(Q − 2α))Γ(1 − b−1(Q − 2α))

−π2
1
4 (2α − Q)

cosh 2πs(Q − 2α) . (C.1)

Boundary reflection coefficient and two-point function:

〈sBβ1(w1)s′Bβ2(w2)s〉 = |w − w̄|−2∆β1

[
δ(β1 + β2 − Q) + RL

s,s′(β1)δ(β1 − β2)
]

, (C.2)

RL
s,s′(β) =

[
πµLγ(b2)b2−2b2

]Q−2β
2b Γb(2β − Q)

Γb(Q − 2β)

∏

±±
Sb

(
Q − β + i(±s ± s′)

)
.

Bulk-boundary two-point function [25]:

〈Vα(z)Bβ(w)〉s = |z − z̄|∆β−2∆α |z − w|−2∆βBL
s (α, β) , (C.3)

BL
s (α, β) = i2−

1
4

[
πµLγ(b2)b2−2b2

]Q−2α−β
2b Γ3

b(Q − β)Γb(2Q − 2α − β)Γb(2α − β)

Γb(Q)Γb(β)Γb(Q − 2β)Γb(2α)Γb(Q − 2α)

×
∫ i∞

−i∞
dp e−4πsp

∏

±

Sb(α + β−Q
2 ± p)

Sb(α − β−Q
2 ± p)

.

From this, one can deduce the bulk-boundary OPE of a bulk degenerate field V− 1
2b

which is

relevant for our continuity assumption (3.17). There is a subtlety: due to the pole structure

of BL
s (α, β), the degenerate limit of the bulk-boundary OPE yields

BL
s (− 1

2b , Q) = lim
α→− 1

2b

Res
β=b−2α

BL
s (α, β) , (C.4)

instead of the incorrect formula BL
s (− 1

2b , Q)
?
= lim

α→− 1
2b

Res
β=Q

BL
s (α, β) which one might

naively have expected. The correct result is

BL
s (− 1

2b , Q) = 2b−2
[
πµLγ(b2)

] 1
2b2

Γ(−1 − 2b−2)

Γ(−b−2)
cosh 2πb−1s . (C.5)

Operator product expansion of a degenerate boundary field:

– 31 –



J
H
E
P
0
1
(
2
0
0
7
)
0
5
7

s+Bβ(w)s−B− 1
2b

(y)s+ ∼ |w − y|b−1(Q−β)CL
s+

(β |
s−

− 1
2b , Q − β − 1

2b)s+B
β+

1
2b

(w)s+

+ |w − y|b−1βCL
s+

(β |
s−

− 1
2b , Q − β + 1

2b )s+B
β− 1

2b
(w)s+ , (C.6)

with the degenerate boundary structure constants

CL
s+

(β |
s−

− 1
2b , Q − β + 1

2b) = 1

CL
s+

(β |
s−

− 1
2b , Q − β − 1

2b) = RL
s−,s+

(β)RL
s+,s+

(Q − β − 1
2b) =

2b−2

π

[
πµLγ(b−1)

] 1
2b2 ×

×Γ(1 − 2b−1β)Γ(2b−1β − b−1Q) cos π(b−1β − b−1Q
2 )

× cos π(b−1β − b−1Q
2 ∓ 2ib−1s+) ,

where s+ = s− ± i
2b . The particular case of the OPE of two degenerate boundary fields

β = − 1
2b is relevant for our continuity assumption (3.16).
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